p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.36D4, C4○D4⋊2C4, D4⋊4(C2×C4), Q8⋊4(C2×C4), C4.50(C2×D4), (C2×C4).123D4, C4.4(C22×C4), D4⋊C4⋊14C2, Q8⋊C4⋊14C2, C4⋊C4.44C22, C2.1(C8⋊C22), (C2×C8).43C22, (C2×C4).62C23, C22.44(C2×D4), C4.24(C22⋊C4), (C2×M4(2))⋊10C2, (C2×D4).48C22, C2.1(C8.C22), (C2×Q8).42C22, C22.4(C22⋊C4), (C22×C4).34C22, (C2×C4⋊C4)⋊10C2, (C2×C4).21(C2×C4), (C2×C4○D4).5C2, C2.20(C2×C22⋊C4), SmallGroup(64,98)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.36D4
G = < a,b,c,d,e | a2=b2=c2=1, d4=c, e2=b, ab=ba, dad-1=ac=ca, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bcd3 >
Subgroups: 137 in 81 conjugacy classes, 41 normal (17 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, D4⋊C4, Q8⋊C4, C2×C4⋊C4, C2×M4(2), C2×C4○D4, C23.36D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C2×C22⋊C4, C8⋊C22, C8.C22, C23.36D4
Character table of C23.36D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | -1 | i | -i | i | 1 | -i | i | i | -i | linear of order 4 |
ρ10 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -i | 1 | i | i | -i | -1 | -i | -i | i | i | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -i | -1 | i | i | -i | 1 | i | i | -i | -i | linear of order 4 |
ρ12 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | 1 | i | -i | i | -1 | i | -i | -i | i | linear of order 4 |
ρ13 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | i | 1 | -i | i | -i | -1 | -i | i | i | -i | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | i | -1 | -i | -i | i | 1 | -i | -i | i | i | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | i | 1 | -i | -i | i | -1 | i | i | -i | -i | linear of order 4 |
ρ16 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | i | -1 | -i | i | -i | 1 | i | -i | -i | i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ22 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 19)(2 24)(3 21)(4 18)(5 23)(6 20)(7 17)(8 22)(9 25)(10 30)(11 27)(12 32)(13 29)(14 26)(15 31)(16 28)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 26 27 8)(2 7 28 25)(3 32 29 6)(4 5 30 31)(9 24 17 16)(10 15 18 23)(11 22 19 14)(12 13 20 21)
G:=sub<Sym(32)| (1,19)(2,24)(3,21)(4,18)(5,23)(6,20)(7,17)(8,22)(9,25)(10,30)(11,27)(12,32)(13,29)(14,26)(15,31)(16,28), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,26,27,8)(2,7,28,25)(3,32,29,6)(4,5,30,31)(9,24,17,16)(10,15,18,23)(11,22,19,14)(12,13,20,21)>;
G:=Group( (1,19)(2,24)(3,21)(4,18)(5,23)(6,20)(7,17)(8,22)(9,25)(10,30)(11,27)(12,32)(13,29)(14,26)(15,31)(16,28), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,26,27,8)(2,7,28,25)(3,32,29,6)(4,5,30,31)(9,24,17,16)(10,15,18,23)(11,22,19,14)(12,13,20,21) );
G=PermutationGroup([[(1,19),(2,24),(3,21),(4,18),(5,23),(6,20),(7,17),(8,22),(9,25),(10,30),(11,27),(12,32),(13,29),(14,26),(15,31),(16,28)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,26,27,8),(2,7,28,25),(3,32,29,6),(4,5,30,31),(9,24,17,16),(10,15,18,23),(11,22,19,14),(12,13,20,21)]])
C23.36D4 is a maximal subgroup of
2+ 1+4⋊3C4 2- 1+4⋊2C4 C42⋊11D4 C42⋊12D4 C24.98D4 2+ 1+4⋊5C4 2- 1+4⋊4C4 C4×C8.C22 C24.105D4 C24.106D4 (C2×D4)⋊21D4 (C2×Q8)⋊17D4 C42.211D4 C42.212D4 M4(2)⋊14D4 M4(2)⋊15D4 (C2×C8)⋊13D4 (C2×C8)⋊14D4 C42.448D4 C42.449D4 C24.183D4 C24.116D4 (C2×D4).303D4 (C2×D4).304D4 C42.243D4 C42.244D4 (C2×C4).S4
C4○D4p⋊C4: C42.280C23 C42.281C23 C4○D12⋊C4 C23.54D12 C4○D20⋊9C4 C23.49D20 C4○D4⋊F5 C4○D28⋊C4 ...
D4p⋊(C2×C4): C4×C8⋊C22 Q8⋊7(C4×S3) Q8⋊(C4×D5) Q8⋊(C4×D7) ...
(C2×C4p).D4: C4○D4.4Q8 C4○D4.5Q8 M4(2).48D4 M4(2).49D4 M4(2).10D4 M4(2).11D4 (C2×C8).55D4 (C2×C8).165D4 ...
C4⋊C4.D2p: C4≀C2⋊C4 C42⋊9(C2×C4) M4(2)⋊6D4 M4(2).7D4 C42.18C23 C42.19C23 C42.22C23 C42.23C23 ...
C23.36D4 is a maximal quotient of
C42.397D4 C42.47D4 D4⋊4M4(2) C42.52D4 C24.150D4 C42.57D4 C42.58D4 C24.58D4 C42.79D4 C42.80D4 C42.81D4 C42.84D4 C42.86D4 C42.87D4 C42.88D4 C24.152D4 D4⋊C42 Q8⋊C42 C24.65D4 C42.99D4 C24.69D4 C24.76D4 C42.123D4 C42.124D4 C4○D4⋊F5
C23.D4p: C23.38D8 C23.54D12 C23.49D20 C23.49D28 ...
(C2×C4).D4p: C42.78D4 C42.98D4 C4○D12⋊C4 C4○D20⋊9C4 C4○D28⋊C4 ...
(C2×C4p).D4: C24.75D4 C42.110D4 C4○D4⋊3Dic3 C4○D4⋊Dic5 C4○D4⋊Dic7 ...
C4⋊C4.D2p: C24.160D4 C42.119D4 D4⋊(C4×S3) Q8⋊7(C4×S3) D4⋊(C4×D5) Q8⋊(C4×D5) D4⋊(C4×D7) Q8⋊(C4×D7) ...
Matrix representation of C23.36D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 4 | 8 |
0 | 0 | 13 | 0 | 13 | 13 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 15 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 2 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 16 |
16 | 15 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 | 16 | 15 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,4,4,13,0,0,13,0,4,0,0,0,0,0,4,13,0,0,0,0,8,13],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,15,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,16,0,0,0,1,1,0,16,0,0,0,2,0,16],[16,1,0,0,0,0,15,1,0,0,0,0,0,0,0,16,1,0,0,0,0,16,0,0,0,0,1,16,0,0,0,0,0,15,0,1] >;
C23.36D4 in GAP, Magma, Sage, TeX
C_2^3._{36}D_4
% in TeX
G:=Group("C2^3.36D4");
// GroupNames label
G:=SmallGroup(64,98);
// by ID
G=gap.SmallGroup(64,98);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,332,963,489,117]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^4=c,e^2=b,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d^3>;
// generators/relations
Export